Capital Assets

Objectives:

Describe capital assets and issues accounting for them.

Apply cost principle to compute the cost of capital assets.

Amortization methods: straight-line, units-of-production, and double-declining balance.

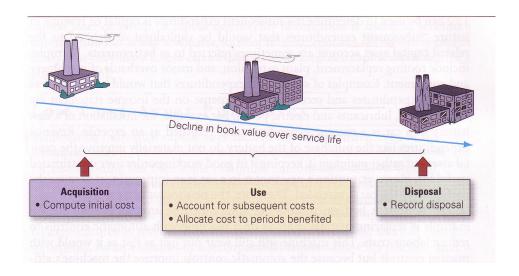
Amortization for partial years.

Revised amortization

Capital assets (fixed assets)

Definition: assets used in the operations of a company that have a useful life of more than one accounting period.

i.e. plant and equipment, natural resources.


Features:

- 1) Capital assets are used in business operations to help generate revenue. (inventory versus capital assets)
- 2) Capital assets have useful lives extending over more than one accounting period.

Accounting for capital assets reflects these two features: we must measure capital assets(balance sheet) and match their cost to periods benefiting from their use(income statement).

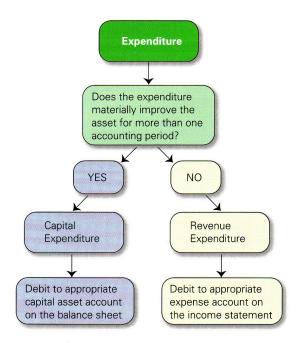
Three main accounting issues:

- 1) Computing and accounting for the initial and subsequent costs of capital assets.
- 2) Allocating the costs of capital assets against revenues for the periods they benefit.
- 3) Recording the disposal of capital assets.

Cost of capital assets

Capital assets are recorded at costs, which includes all normal and reasonable expenditures necessary to get the asset in place and ready for its intended use.

When expenditures regarding capital assets are not considered a normal part of getting the asset ready for its intended use, they are charged to another account.


Revenue expenditures: costs that maintain an asset but do not materially increase the asset's life or productive capabilities. (recorded as expenses and deducted from revenues in the current period)

Subsequent expenditures (operate, maintain, repair and improve)

Betterments: subsequent expenditures that would be capitalized or debited to elated capital asset account. (improvement)

Revenue expenditures: are recorded as expense on the income statement. (maintenance)

It a Capital or Revenue cpenditure?

Case in point:

You are a mechanic who recently opened your own auto service centre. Because of a cash shortage, you are preparing financial statements in the hope of getting a short-term loan from the bank. A friend of yours suggests you treat as many expenses as possible like a capital expenditure. What are the effects on financial statements of treating expenses as capital expenditures? What do you think of your friend's proposal?

Land

The cost of land includes the total amount paid for the land.(real estate commissions, fees, property taxes, surveying, clearing, grading, draining, landscaping, (removing expenses less savage values))

Illustrate 606

Land improvements

Land has an unlimited life: it is not subject to amortization.

However, land improvements(driveways, fences, lighting systems) have a limited useful lives.

Buildings

The costs of buildings usually includes: purchase price, fees, taxes.

Plus, all expenditures to make it ready for its intended use such as repairs or renovations. (materials and labour)

Machinery and equipment

The cost consists of all costs normal and necessary to purchase the equipment and prepare them for their intended use.

Amortization

Amortization is the process of matching the cost of the capital asset over the time that the asset is used.

The cost should be amortized over their useful lives.

Illustrate 608

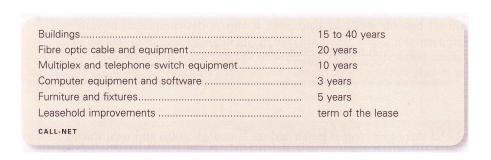
Reporting amortization of assets

(in thousands of Canadian \$)	2000	1999
Property and equipment, net (Note 4)	\$630,132	\$326,535
Note 4	2000	1999
Flying assets		
Cost	\$709,106	\$411, <mark>5</mark> 94
Less: Accumulated amortization	50,183	40,127
	658,923	371,467
Provision for major component overhaul	121,895	68,345
	537,028	303,122
Facilities		
Cost	78,919	26,964
Less: Accumulated amortization	14,651	11,578
	64,268	15,386
Equipment		
Cost	42,395	17,899
Less: Accumulated amortization	13,559	9,872
	28,836	8,02
	\$630,132	\$326,53!

Reporting both the cost and accumulated amortization.

Reporting at their book values, not at market values.

Factors in computing amortization


- 1) cost,
- 2) salvage value
- 3) useful life.

Cost: consists of all reasonable expenditures to acquire and prepare the asset for its use.

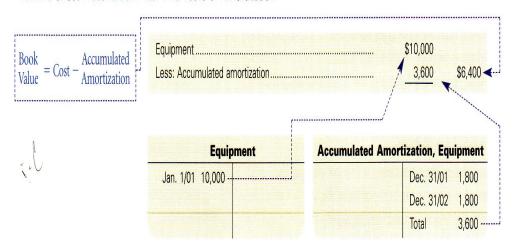
Salvage value (residual value or scrap value) is an estimate of the amount we expect to receive from selling the asset at the end of its useful life.

Useful life(service life): is the length of time it si productively used in the operations.

Example with Call-net enterprises

Amortization methods

- 1) straight-line,
- 2) units-of-production
- 3) double-declining-balance


Straight-line method

- a) compute the cost to be amortized over the asset's life by subtracting the asset's salvage value from its total cost.
- b) The cost to be amortized is divided by the asset's useful life.

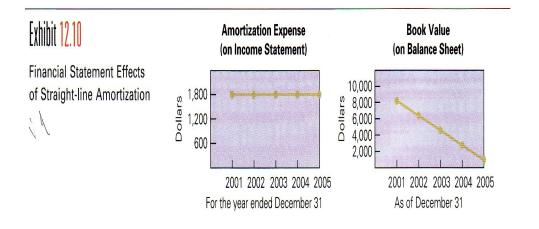

i.e. 611

Exhibit 12.9

Balance Sheet Presentation After Two Years of Amortization

The graphs in Exhibit 12.10 show why this method is called straight-line amortization and also show the decline in book value by \$1,800 amortization each year.

	Amort	ization for the	End of Period		
Period		Amortization Rate		Accumulated Amortization	Book Value
					10,000
2001	\$9,000**	20%	\$1,800	\$1,800	8,200
2002	9,000	20	1,800	3,600	6,400
2003	9,000	20	1,800	5,400	4,600
2004	9,000	20	1,800	7,200	2,800
2005	9,000	20	1,800	9,000	1,000

Note:

- 1) amortization expense is the same each period
- 2) accumulated amortization is the sum of current and prior periods' amortization expense.
- 3) Book value declines each period until it equals salvage value at the end of its useful life.

Units-of-production method

When use of equipment varies from period to period, the units-of-production amortization method can provide a better matching of expenses with revenues.

This method charges a varying amount to expenses for each period of an asset's useful life depending on its usage.

A two-step process is used to compute units-of-production amortization:

- 1. Compute the amortization per unit by subtracting the asset's salvage value from its total cost, and then dividing by the total number of units expected to be produced during its useful life. Units-of-production can be expressed in units of product or in any other unit of measure such as hours used or kilometres driven. This gives us the amount of amortization per unit of service provided by the asset.
- 2. Compute amortization expense for the period by multiplying the units used in the period by the amortization per unit.

The formula and computation for units-of-production amortization for the inspection machine described in Exhibit 12.7 are shown in Exhibit 12.12 (assume 7,000 shoes inspected in its first year).

Step 1:

Amortization per unit =
$$\frac{\text{Cost} - \text{Salvage value}}{\text{Total units of production}} = \frac{\$10,000 - \$1,000}{36,000 \text{ units}} = \$0.25 \text{ per shoe}$$

Step 2:

Amortization expense = Amortization per unit \times Units used in period \times 7,000 shoes = \\$1,750

Using the production estimates for the machine we compute the *units-of-production amortization schedule* shown in Exhibit 12.13. If the machine inspects 7,000 shoes in its first year, amortization for that first year is \$1,750 (7,000 shoes at \$0.25 per shoe). If the machine inspects 8,000 shoes in the second year, amortization for the second year is 8,000 shoes times \$0.25 per shoe, or \$2,000.

	Amortization for the Period				End of Period	
			Amortization		Book	
Period	of Units	per Unit	Expense	Amortization	Value	
					\$10,000*	
2001	7,000**	\$0.25	\$1,750	\$1,750	8,250	
2002	8,000	0.25	2,000	3,750	6,250	
2003	9,000	0.25	2,250	6,000	4,000	
2004	7,000	0.25	1,750	7,750	2,250	
2005	5,000	0.25	1,250	9,000	1,000	

^{*} Cost on January 1, 2001

Declining-balance method

An accelerated amortization method yields larger amortization expenses in the early years of an asset's life and smaller charges in later year.

This method uses an amortization rate of up to twice the straight-line rate and applies it to the asset's beginning-of-period book value.

Steps:

- 1) Compute the asset's straight-line amortization rate (100% divided by years of useful life,
- 2) Double it
- 3) Compute amortization expense by multiplying this rate to the asset's beginning-of-period book value.

	Amortizat	Amortization for the Period			End of Period	
Period	Beginning of Period Book Value		Amortization Expense	Accumulated Amortization	Book Value	
			<u> —</u>		10,000	
2001	\$10,000	40%	\$4,000	\$4,000	6,000	
2002	6,000	40	2,400	6,400	3,600	
2003	3,600	40	1,440	7,840	2,160	
2004	2,160	40	864	8,704	1,296	
2005	1,296	40	296**	9,000**	1,000	

Comparing amortization methods

Period	Straight-Line	Units-of-Production	Double-Declining-Balance
2001	\$ 1,800	\$ 1,750	\$ 4,000
2002	1,800	2,000	2,400
2003	1,800	2,250	1,440
2004	1,800	1,750	864
2005	1,800	1,250	296
	\$9,000	\$9,000	\$9,000

Partial year amortization

Nearest whole month

When calculating amortization for partial years to the nearest whole month, amortization for a month is calculated if the asset was in use for more than half of that month.

I.e.

Half-year rule

Amortization for the first year of an asset's life is always half year, regardless of when during the year the asset was actually put into use.

Revising amortization rate

When an estimate of useful life/or salvage value changes we must use a revised amortization for current and future periods.

i.e. original cost: \$10 000, original salvage value \$1 000 and original useful life 5 years.

After two years new estimates the remaining useful life changes from 3 to 4 years and the salvage value to \$400.

Amortization reflects the best information available at the time. Therefore, do not go back to restate past years' results.

Revising estimates of the useful life or salvage value of a capital asset is referred to as **change in an accounting estimate.**